Spectral asymptotics for inverse nonlinear Sturm-Liouville problems
نویسندگان
چکیده
منابع مشابه
Spectral asymptotics for inverse nonlinear Sturm-Liouville problems
We consider the nonlinear Sturm-Liouville problem −u′′(t) + f(u(t), u′(t)) = λu(t), u(t) > 0, t ∈ I := (−1/2, 1/2), u(±1/2) = 0, where f(x, y) = |x|p−1x − |y|m, p > 1, 1 ≤ m < 2 are constants and λ > 0 is an eigenvalue parameter. To understand well the global structure of the bifurcation branch of positive solutions in R+ ×Lq(I) (1 ≤ q < ∞) from a viewpoint of inverse problems, we establish the...
متن کاملInverse spectral problems for Sturm-Liouville operators with transmission conditions
Abstract: This paper deals with the boundary value problem involving the differential equation -y''+q(x)y=lambda y subject to the standard boundary conditions along with the following discontinuity conditions at a point y(a+0)=a1y(a-0), y'(a+0)=a2y'(a-0)+a3y(a-0). We develop the Hochestadt-Lieberman’s result for Sturm-Lio...
متن کاملInverse Spectral Problems for Nonlinear Sturm-liouville Problems
This paper concerns the nonlinear Sturm-Liouville problem −u′′(t) + f(u(t)) = λu(t), u(t) > 0, t ∈ I := (0, 1), u(0) = u(1) = 0, where λ is a positive parameter. We try to determine the nonlinear term f(u) by means of the global behavior of the bifurcation branch of the positive solutions in R+ × L2(I).
متن کاملInverse Spectral Theory for Sturm-liouville Problems with Finite Spectrum
For any positive integer n and any given n distinct real numbers we construct a Sturm-Liouville problem whose spectrum is precisely the given set of n numbers. Such problems are of Atkinson type in the sense that the weight function or the reciprocal of the leading coefficient is identically zero on at least one subinterval.
متن کاملInverse Sturm-Liouville problems with transmission and spectral parameter boundary conditions
This paper deals with the boundary value problem involving the differential equation ell y:=-y''+qy=lambda y, subject to the eigenparameter dependent boundary conditions along with the following discontinuity conditions y(d+0)=a y(d-0), y'(d+0)=ay'(d-0)+b y(d-0). In this problem q(x), d, a , b are real, qin L^2(0,pi), din(0,pi) and lambda is a parameter independent of x. By defining a new...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Qualitative Theory of Differential Equations
سال: 2009
ISSN: 1417-3875
DOI: 10.14232/ejqtde.2009.1.58